๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
๐Ÿ’ป Programming ๊ฐœ๋ฐœ

[์ธ๊ณต์ง€๋Šฅ] ํ† ์ต1์œ„์•ฑ, AI ํ† ์ต ํŠœํ„ฐ ์‚ฐํƒ€ํ† ์ต์˜ ํ˜„์ง์ž ์„ธ๋ฏธ๋‚˜ ํ›„๊ธฐ

by kimdee 2021. 6. 25.
๋ฐ˜์‘ํ˜•

* ์ด ๊ธ€์€ 2019๋…„๋„์— ์‚ฐํƒ€ํ† ์ต ํ˜„์ง์ž ๋ถ„์—๊ฒŒ ๋“ค์—ˆ๋˜ ์„ธ๋ฏธ๋‚˜ ํ›„๊ธฐ๋ฅผ ๊ฐ„๋žตํžˆ ์ •๋ฆฌํ•œ ๋‚ด์šฉ์ž…๋‹ˆ๋‹ค. 

 

์‚ฐํƒ€ํ† ์ต์— ์“ฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์‚ฐํƒ€์ธ์‚ฌ์ด๋“œ

 

์‚ฐํƒ€์ธ์‚ฌ์ด๋“œ

์‚ฐํƒ€ํ† ์ต์— ์“ด ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์‹œ์Šคํ…œ์„ ๊ฐ€์ ธ์™€ ๋‹ค๋ฅธ ๊ณณ์—์„œ๋„ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ๋” ํ•˜๋Š” (๊ฐœ๋ฐœ์ค‘)

์ „์„ธ๊ณ„์˜ test prep ai tutor ๊ฐ€ ์‚ฐํƒ€์ธ์‚ฌ์ด๋“œ ๊ธฐ๋ฐ˜ 

https://santainside.riiid.app/en/techs/ai

 

์‚ฐํƒ€ํ† ์ต ๊ฐœ๋ฐœ์‚ฌ ๋คผ๋“œ์˜ ํŠนํ—ˆ ๋ฐ ๋ธ”๋กœ๊ทธ

https://riiid.co/en/achievement

 

๋Œ€ํ‘œ์ ์ธ ํŠนํ—ˆ๋…ผ๋ฌธ

https://patentimages.storage.googleapis.com/f9/26/68/22a7e9c39fb9d0/KR101853091B1.pdf

 

๊ฐ•์—ฐ ์ค‘ ์–ธ๊ธ‰ํ•œ ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 

NLP Bayesian IRT

https://www.stata.com/stata-news/news31-1/bayesian-irt/

 

 

NLP SOTA ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ attention

https://www.google.com/search?q=sota+nlp+attention&oq=sota+nlp+attention&aqs=chrome..69i57.4282j0j7&sourceid=chrome&ie=UTF-8

 

 

์ถ”์ฒœ์‹œ์Šคํ…œ ๊ณต๋ถ€์ถ”์ฒœ

NETFLIX Rating(Prized) DATA>> kaggle์— ์•„๋งˆ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•”. 

 

 


 

๋ฌธ์ œ ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜  ๋ฐ ํ•„ํ„ฐ๋ง

 

ํ† ์ต ๋ฌธ์ œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•ด์„œ 

๋Œ€ํ‘œ์ ์œผ๋กœ ๋“€์˜ค๋ง๊ณ  (์›Œ๋“œ ๋ฐฐ์น˜๋งŒ ๋ฐ”๊ฟ”์„œ ํ•˜๋Š” ๊ฐ„๋‹จํ•œ ์›๋ฆฌ) 

 

 

์‚ฐํƒ€ํ† ์ต์—์„œ๋Š” ์ฒ˜์Œ์— ๋ฌธ์ œ๋ฅผ ๋ฒŒํฌ๋กœ ์‚ฌ์™”๋‹ค๊ณ  

 

์œ ์ €๊ฐ€ ์–ด๋–ค ๋ฌธ์ œ๋ฅผ ๋งž๊ณ  ํ‹€๋ฆฌ๊ณ ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ถ„์„์„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— 

๋ฌธ์ œ๋ฅผ ์ƒ์„ฑํ•ด์„œ ํ•˜๋Š” ๊ฒƒ์—๋Š” ๋” ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•  ๊ฑฐ๋ผ ์ƒ๊ฐ๋จ 

 

 

collaborative filtering 

> model base๋ฅผ ๋”ฅ๋Ÿฌ๋‹์œผ๋กœ ํ•ด๊ฒฐํ•˜์…จ๋‹ค๊ณ  ํ•œ๋‹ค.

 

๋‚ด๊ฐ€ a๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ๋งž๊ณ  b๋ฅผ ํ‹€๋ ธ๋‹ค๊ณ  ํ•˜๋ฉด, 

๋‚˜์™€ ๋น„์Šทํ•˜๊ฒŒ ๋งž๊ณ  ํ‹€๋ฆฐ ์œ ์ €๋“ค์˜ ๊ตฐ์ง‘์ด ์žˆ๋Š”๋ฐ

๊ฐœ์ค‘์— c๋ฅผ ํ‘ผ ์‚ฌ๋žŒ๋“ค ๋Œ€๋ถ€๋ถ„์ด ๋งž์•˜๋‹ค… ๋ฉด

๋‚˜ ์—ญ์‹œ๋„ c๋ฅผ ๋งž์„ ํ™•๋ฅ ์ด ๋†’๋‹ค… 

 

์ด๋Ÿฐ์‹์œผ๋กœ ์˜ˆ์ธก์„ ํ•œ๋‹ค๊ณ . 

 

๋˜ํ•œ ๋‚˜์™€ ๋น„์Šทํ•œ ์œ ์ €๋“ค์ด 

์–ด๋–ค ๋ฌธ์ œ๋ฅผ ํ’€๊ณ  ์ ์ˆ˜๊ฐ€ ์˜ฌ๋ž๋‹ค๊ณ  ํ•˜๋ฉด

๊ทธ๊ฑธ ๊ทธ๋Ÿฐ์‹์œผ๋กœ

 

๋„๋ฉ”์ธ์ •๋ณด๋ฅผ ๋”ฐ๋กœ ์“ฐ์ง€ ์•Š์Œ. 

 

๋…ธ์ด์ฆˆ ํ•„ํ„ฐ๋ง

= regularizing ์ •๊ทœํ™”

์ตœ๊ทผ์— ๋‚˜์˜จ attention ๊ธฐ๋ฒ•๋„ ๊ทธ ์ค‘ ํ•˜๋‚˜  

 

๋…ธ์ด์ฆˆ ์ œ๊ฑฐ์—๋Š” ์—ฌ๋Ÿฌ ๋ฐฉ๋ฒ•์ด ์žˆ์ง€๋งŒ, 

๊ฒŒ์†ํ•ด์„œ ํ•™์Šต train ์„ ํ•ด์•ผ๋œ๋‹ค. 

 

์ด๋ฅผํ…Œ๋ฉด

๋„ˆ๋ฌด ์ ์€ ๋ฌธ์ œ๋ฅผ ํ‘ผ ์œ ์ €๋“ค์„ ์ œ์™ธํ•˜๊ฑฐ๋‚˜

๋ฌธ์ œ๋ฅผ ํ‘ผ ์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ์งง/๊ธธ๋ฉด ์ œ๊ฑฐํ•˜๊ฑฐ๋‚˜

์‹ค์ œ๋กœ ์„ฑ์ ์ด ํ–ฅ์ƒ๋œ ์‚ฌ๋žŒ๋“ค ๊ธฐ์ค€์œผ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹์„ ๋Œ๋ฆฐ๋‹ค๋“ ์ง€ 

 

:๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์„ ๋ฝ‘์•„๋‚ด์„œ ํ•˜๋Š” ๋ฐฉ์‹์ด ์žˆ๋Š”๋ฐ ๊ฒฐ๊ตญ ๋ฆฌ์ŠคํŠธ ๋„ ์žˆ๋‹ค. 

ํ•™์Šต์ด ์ž˜๋œ ์‚ฌ๋žŒ๋“ค ๊ธฐ์ค€์œผ๋กœ ํ•˜๊ฒŒ ๋˜๋ฉด, ํ•™์Šต์„ ์ž˜ํ•˜๋Š” ์œ ์ €์ธต์— ๊ณผ์ ํ•ฉ over-fitting ๋œ๋‹ค๊ณ .

๋…ธ์ด์ฆˆ๊ฐ€ ๋งŽ์€ ๊ฒƒ ์ฒ˜๋Ÿผ ๋ณด์ด๋Š” ์œ ์ €๋“ค ๋“ฑ.. 

 

๋ชจ๋ธ์„ ๊ณ ๋„ํ™”์‹œํ‚ค๊ณ  ์—ฌ๋Ÿฌ ์‹คํ—˜์„ ํ•ด๋ณด๋Š” ์ˆ˜๋ฐ–์—..! 

 

๋ฐ˜์‘ํ˜•

๋Œ“๊ธ€